Category Archives: Science

Shift theoretical focus from nuclear consequences to chemical beginnings

I would like to emphasize one other aspect of LENR that is frequently overlooked: Fusion can be caused by two different mechanisms.

The common one, called hot fusion, involves applying high energy to the reacting nuclei. This approach takes advantage of the increased reaction rate applied energy provides. Science has ignored what happens when fusion takes place at low energy because the rates are too low to study the process.

Discovery of LENR, called cold fusion, has revealed how the fusion rate can be increased without using applied energy. However this process requires a unique condition I identify as the NAE. As many people have noted, the NAE acts like a catalyst so that applied energy is no longer required. This being the case, the essential understanding of the LENR process resides in the nature of the NAE. Creation of the NAE makes LENR possible and the unique fusion mechanism operates only within the confines of the NAE.

A condition is created within the NAE in which the Coulomb barrier can be overcome without applied energy, and mass-energy can be converted to heat energy without producing the high-energy radiation normally associated with nuclear interaction. The magic of LENR takes place in and only in the NAE.

This concept does not conflict with or violate any physical law because this unique condition has yet to be explored by science. This is virgin territory having no relationship to hot fusion or to the concepts obtained from studies of the hot fusion mechanism.

Therefore, identifying and describing the NAE is essential to creating a useful theory about LENR. Because the NAE is part of a chemical structure, the chemical conditions must be part of this understanding.

Unlike hot fusion, which occurs in plasma, cold fusion is strongly influenced by the chemical properties of the material in which NAE forms. Most theories mistakenly ignore the chemical requirements.

Without a chemical structure and its chemical behavior, the NAE cannot form and LENR cannot occur. Consequently, LENR is first and foremost a chemical process with nuclear consequences. Thus, the focus should be shifted from the nuclear consequences to those conditions required to form the NAE and to its role in hosting the nuclear reactions.

This idea might be a bridge too far for many theoreticians, nevertheless, I strongly suggest an effort be made to cross the bridge rather than keep trying to swim the river.

Facebooktwittergoogle_plusredditby feather

LENR behaviors that theory must explain

The many discussions of theory have encouraged me to summarize what is known about LENR having relevance to theory, and what a theory requires to explain.

A theory in conflict with any one of these essential requirements, I suggest, is not worth discussing. On the other hand, many details about each of the requirements need to be ignored until more information is obtained. Nevertheless, the basic requirements can be used to eliminate many ideas and reduce the discussion to a few possibilities.

For those who believe theory is not important or useful, I would like to point out that we presently have theories being used to explain behavior and to design experiments. If these theories are wrong, the conclusions being reported will be wrong. Agreeing on the basic characteristics of LENR would help prevent such mistakes.

LENR has a few basic and well established behaviors and many unknown features. We can debate the unknowns, but the well known behaviors must be acknowledged by any effective explanation.

Of course, imagination can provide all kinds of exceptions to any condition, but an effective search best focuses on the more plausible and more likely possibilities.

The well known LENR behaviors include:

1. LENR is initiated only with great difficulty. Many materials have been subjected to a wide range of conditions without LENR being produced.

2. Once a material is “activated” the LENR effect is robust and sustained with a possible rate in excess of 10^11 events/sec.

3. Helium, tritium, and a variety of transmutation products are formed.

4. Each of these nuclear products are found produced in the surface region when the location can be determined.

5. Helium production is the source of most observed heat energy.

6. Very little energetic radiation is detected outside the apparatus.

7. Because LENR takes place in a chemical structure surround by normal atoms, the mechanism causing the nuclear reaction must be consistent with this environment.

Normally, any mechanism able to initiate a nuclear reaction will also cause significant chemical changes in the surrounding material. Such changes are not observed when LENR occurs.

1. The behavior identified as #1 implies that a rare and novel condition must form in the material in order for the LENR process to occur. I call this region the nuclear active environment (NAE). This region is not present in most materials and can not be easily created.

This characteristic eliminates vacancies of any type, dislocations of any kind, impurities of any kind, and large cracks because each of these features is normally present in common materials.

2. The characteristics listed in #2 show that the NAE is stable once formed and can be present in significant concentration. The NAE is not the result of a minor impurity or an occasional flaw in the material.

3. Helium and tritium formation can be attributed to reactions between isotopes of hydrogen but transmutation is difficult to explain. The explanation of transmutation must account for two types, one that adds helium to a nucleus without fragmentation and another type that results in fragmentation of the target after hydrogen is added.

4. The nuclear products are found associated only with the surface region. Consequently, the NAE is not expected to form in the bulk material.

5. Most of the heat energy results from He4 formation when deuterium is used. An effective theory must explain how helium is formed while producing the amount of energy expected to result from D+D fusion.

6. The huge mass-energy released by a nuclear reaction must be communicated to the surrounding material as heat energy. This process must not destroy the NAE or create significant energetic radiation. Consequently, a narrow range is placed on the rate at which energy is released and the type of the energy release process.

7. Creation of the NAE and the nuclear process must be compatible with the chemical conditions known to be associated with the material in which LENR takes place.

Are there additions or clarifications?

Can these requirements be used to eliminate the bad theories?

Facebooktwittergoogle_plusredditby feather

On tritium production in LENR

Tritium is the best documented demonstration of the LENR process. Here is a histogram showing the number of measurements that related tritium to neutron production.

Number of experiments that related tritium to neutron production.
Number of experiments that related tritium to neutron production.

Many more measurements of tritium are available that did not attempt to measure the neutron flux. Tritium can be detected without any doubt and it can only result from a novel nuclear process having no conventional explanation.

The reason for its low production rate can be explained. As I have proposed, tritium results from fusion of d-e-p. An effective rate requires an equal amount of d and p in the NAE. Unfortunately, most studies when tritium is detected used pure D2O containing very little p. Consequently, finding very little tritium is to be expected. One study shows that the amount of tritium produced is sensitive to the d/p ratio, as this fusion process would predict.

Production of energy is also low when tritium forms because only 6 MeV/event is produced. Addition of H2O to D2O reduces the amount of power. The exact amount of reduction still needs further study.

Very few ways are available to produce tritium without neutrons being produced or being used. The fact that tritium is found without neutron involvement provides a window into the LENR process not available when only helium is considered.

Helium has provided an explanation for the energy but its presence gives limited information about the mechanism. Obviously, two D must fuse to produce He. We are required to speculate about how this process might take place.

To form tritium from d and p, the only possible reactants present when LENR occurs, an electron must be added to the d+p fusion process. This addition gives insight into how the fusion process might take place.

If we assume, LENR involves the same mechanism regardless of the isotopes of hydrogen present, we obtain the process I have proposed. This process predicts the source of energy using Ni-H2, the spectrum of isotopes produced by the two transmutation reactions, and where to look for additional confirmation.

Facebooktwittergoogle_plusredditby feather

Conclusion: Key to understanding FPE is temperature

electrolytic-cell-1The Progress Reports have revealed some important behaviors having a relationship to attempts at replication and to the various proposed theories. Its time to put these behaviors in context and suggest some conclusions.

If you are tempted to speculate on your own, please do read the reports first and make yourself knowledgeable about what has been observed in other studies published over the last 26 years. We now have enough information, when considered in its totality, to arrive at some very firm conclusions.

Progress will be made only when this understanding is accepted and used as a guide to support additional understanding.

As anyone who is familiar with the many observations will understand; the conclusions noted below are totally consistent with past observed behavior. The only conflict is with the past conclusions. Many of these past conclusions are now shown to be wrong.

1. The LENR process is not initiated when a sample of Pd is initially loaded to high composition. Additional treatment is required to cause the LENR process to start. Once this additional treatment is successful, LENR will take place over a very wide range of deuterium concentration, even after all D is removed and the sample is again reacted with D.

2. Only certain batches of Pd can be activated. One of the requirements for successful activation is lack of significant excess volume formation when the Pd is reacted with D.

3. Excess power produced by an activated sample is very reproducible once it is initiated as long as the surface is not removed. This behavior is consistent with the surface being the location of the nuclear reaction based on the behavior of helium release.

4. Once the LENR process starts, the amount of current applied as electrolytic current has no effect on the amount of excess power produced. Only the temperature of the active surface has any effect on excess power production, with higher temperatures producing greater excess power. We can assume that once a sample is activated, simply exposing it to D2 gas and heating it would cause excess power production. In other words once the sample of Pd is activated, use of electrolysis is no longer necessary.

5. The activation energy for excess power production based on the temperature effect is similar to the value for the activation energy for diffusion of D in PdD. We can assume excess power production is controlled by how fast the D can diffuse from the surrounding lattice to the NAE where the nuclear reaction occurs.

6. So called life-after-death will result in eventual destruction of the sample if the temperature is not controlled, as some people have observed. In other words, the system suffers from positive feedback as Rossi has also experienced using the Ni-H2 system. This positive feed back is generally not observed because the amount of power produced relative to the rate at which it can be lost is small.

7. Once the role of electrolytic current is understood, the F-P method can be seen to have the same basic behavior as all methods found to initiate LENR, including the Ni-H2 system. In other words, no reasons exists based on observed behavior to consider the Pd-D2 system different from the Ni-H2 system. Only the reacting isotopes are different which naturally would produce different nuclear products.

All of behaviors and conclusions resulting from this study are consistent with the Nano-crack theory I proposed. Most other proposed theories are not consistent with all the observations and conclusions. These conflicts need to be resolved for any progress to be made.

See also:

Progress Report #6

Progress Report #5

Progress Report #4

Progress Report #3

Progress Report #2

Progress Report #1

Facebooktwittergoogle_plusredditby feather

Progress Report #6

This report extends the insights described in Report #5 and shows that several common conclusions about LENR are wrong. These errors have handicapped efforts to achieve reproducibility and have lead several theories in the wrong direction.

PROGRESS-REPORT-6 Additional behavior of pure PdD (1.3Mb)

Temperature plays a significant role in affecting the amount of power produced by LENR. The activation energy for power production is very similar to the activation energy for diffusion of D in PdD. This behavior is consistent with my theory in which temperature is described as helping D reach the NAE by diffusion through the surrounding lattice.

Comments are welcome.

Figure 9 from Progress Report #6 showing surface of the Pd cathode after the study.
Figure 9 from Progress Report #6 showing surface of the Pd cathode after the study.
Figure 10 from Progress Report #6 shows surface of Pd before the study.
Figure 10 from Progress Report #6 shows surface of Pd before the study.

Read more from PROGRESS-REPORT-6 (1.3Mb)

See also:

Progress Report #6

Progress Report #5

Progress Report #4

Progress Report #3

Progress Report #2

Progress Report #1

Facebooktwittergoogle_plusredditby feather