Tag Archives: cold fusion

HYDROTON A Model of Cold Fusion

Ruby Carat and the Cold Fusion Now! collective have released a new video documentary, this time tackling cold fusion theory with Edmund Storms HYDROTON A Model of Cold Fusion.

The 28-minute science special continues where the book The Explanation of Low Energy Nuclear Reaction left off. It features Dr. Edmund Storms describing his theory of the cold fusion/LENR reaction that focuses on the unusual form of hydrogen that can form in the nano-spaces of materials.

Nano-cracks in materials will have a high negative-charge along the walls of the space, allowing positively-charged hydrogen nuclei to be closer than they normally could.

Subject to resonance, the hypothesis proposes a linear array of hydrogen nuclei and electrons in the nano-crack that can engage in a “slow fusion” process, whereby the smaller bits of mass turn to energy by releasing coherent photons.

If true, the mechanism would be an extension of conventional nuclear models which only describes fusion in a hot plasma, where nuclei collide violently to fuse.

The action is animated by artist Jasen Chambers who modeled all the isotopes of hydrogen in the unique LENR process.

Ruby Carat has had multiple interviews with Dr. Storms since 2011, most recently in the offices of Cold Fusion Now! in Eureka, California, US. That video composite describes the Nano-gap Hydroton Model and its development.

Hypotheses of the Nano-gap Hydroton model are currently being tested for confirmation.

See Edmund Storms HYDROTON A Model of Cold Fusion on the Cold Fusion Now! Youtube page here https://youtu.be/D4BPtwzsgiw

Get Edmund Storms’ book The Explanation of Low Energy Nuclear Reaction: An Examination of the Relationship between Observation and Explanation from his website http://www.lenrexplained.com

Dr. Edmund Storms website http://www.lenrexplained.com

Edmund Storms HYDROTON A Model of Cold Fusion

HYDROTON animation by Jasen Chambers http://jasenlux.com

Title animation by Augustus Clark and Mike Harris http://augustusclark.com

Music by Esa Ruoho a.k.a. lackluster https://lackluster.bandcamp.com

ICCF-18 video by Eli Elliott http://www.elienation.com

Filmed, edited and narrated by Ruby Carat https://twitter.com/ColdFusionNow

Our work supports Cold Fusion Now! and Eugene Mallove’s Infinite Energy Foundation. We hope you will too.

http://www.coldfusionnow.org

http://infinite-energy.com

Facebooktwittergoogle_plusredditby feather

Q&A on the NAE

Peter Gluck of Ego-out engages Edmund Storms on the NAE
http://egooutpeters.blogspot.ro/2017/01/jan-23-2017-lenr-info-questions.html

Question If NAE are nanocracks – why is there a limit for their number/density? What is the limiting factor?

Answer The cracks are generated by stress generated by the change in volume when D reacts with Pd. The cracks form at weak regions in the structure. A limit to the number of weak regions exists in a structure. Once crack formation has relieved the stress, no further cracks can form. This is basic material behavior having nothing unusual about the process until the Hydroton forms. For reasons yet unknown, once the critical size crack forms, it can then support the LENR process.

Question Are those active cracks special in some way or is it only a problem of size?

Answer The gap size is the critical condition. A size too large can not support LENR.

Question If temperature is a factor, how?

Answer Temperature determines how fast D can get to the NAE by diffusion from its site in the surrounding lattice.

Question Will the processes at 70, 400, 800, 12000 C be qualitatively the same, or will be some changes in the mechanism?

Answer The mechanism is not changed by temperature. Temperature ONLY changes how fast the fuel (D or H) can get to where it can fuse.

Question How and why do the NAE resist and survive the nuclear process?

Answer The gap is filled with a chemical structure consisting of chains of D. These chains (Hydrotons) fuse by an unknown process and are destroyed. The gap remains in which more Hydroton can form. The gap can remain because the energy is released slowly without causing destruction of the local lattice structure. As I have been saying, one unique and required feature of LENR is the slow rate at which energy is released. Of course, this process is only slow when compared to the hot fusion process. Cold fusion is actually better described as slow fusion.

Question Piantelli said he had excess heat for months. The Rossi heat effect seems to be OK for 6 months. Why is the duration of the PdD excess heat a problem?

Answer Many people have seen the process last for a long time. In my case, it stops only when I cause it to stop because want to go on to other studies.

Question What do you think and which factors play a role for the claimed greater density of NAE in NiH then in PdD – metallurgy, morphology? Perhaps we have to consider that Pd D works with deuterium and NiH with protium.

Answer Ni does not take up as much hydrogen isotope as Pd, hence the stress is less compared to Pd. Also, Ni is stronger than Pd, thereby preventing the stress from producing much cracking. Rossi found a way to produce the active cracks in Ni powder where each grain could contain a number of active cracks. Arata was able to activate Pd powder with impressive power production. Clearly, powder allows more NAE to form within the same weight of material. Work in Japan is taking advantage of this conclusion using Pd.

Facebooktwittergoogle_plusredditby feather