Relationship between the burnishing process used by Mizuno and the Storms theory of NAE formation

Copyright by Edmund Storms August 2019. May be quoted freely with attribution.

Relationship between the burnishing process used by Mizuno
and the Storms theory of NAE formation
[.pdf] by Edmund Storms Kiva Labs, Santa Fe, NM (8/1/19)


Mizuno [1] has applied Pd to Ni mesh by burnishing and claimed to make excess energy by heating the material in D2 gas. This method is expected to produce the conditions predicted by Storms to cause LENR. The relationship between the burnishing method and the Storms theory of LENR is described as well as several testable predictions.


The LENR process involves two separate and independent events, one involving a common chemical process and the other caused by a unique nuclear process. The first event creates a condition in the material in which the nuclear process can function. Without this condition being present, the nuclear process cannot take place. But once this special condition forms, the nuclear process occurs without further delay. The difficulty in causing the LENR process results from failure to create this required special condition.

According to the Storms’ theory[2], this special condition, called the NAE (Nuclear Active Environment), consists of physical gaps having dimensions of a few nanometers between the atomic planes. Such gaps can be formed in many different ways, but up to the present time they have resulted when stress is relieved at random sites within the physical structure. The stress is created when the material, usually palladium, reacts with isotopes of hydrogen, thereby causing expansion. Removal of the hydrogen causes contraction, during which time most of the gaps (cracks) form. This counter intuitive conclusion results because the expansion resulting during reaction with hydrogen produces mainly compressive stress, which on average would not produce gaps. Removal of hydrogen produces contraction that results in the kind of stress required to produce gaps. Consequently, according to the Storms model, the Pd must experience deloading at one time during the study for LENR to be triggered.[3] Once formed, the NAE seems to be stable for long periods of time.

After a gap forms, generally at a grain boundary, the local stress can be relieved most easily by making the gap wider rather than by causing other gaps to form. This natural tendency causes the initial small gaps to grow wider and form what can be clearly seen as cracks rather than remain small enough to cause LENR. This process results because less energy is required to move atoms further apart once the atomic bond as been broken than is required to break the bond in the first place. Nature will always take the path of least resistance. This conventional process explains why LENR is not initiated even though many cracks are clearly observed.

The amount of overall dimensional change, hence amount of stress, is related to the amount of hydrogen that reacts, thereby causing an apparent relationship between the maximum D/Pd ratio achieved by the material and the amount of excess energy resulting from formation of numerous gaps.[4] Although, palladium is normally used to form the required gaps, which is the example used in this paper, other materials can be expected to experience the same process and consequently produce LENR.

The greater the number of gaps having the required dimension, the greater the overall rate of LENR. Because suitable gaps are rarely produced in conventional materials, the challenge is to modify the material such that a large number of independent small gaps can form during loss of hydrogen or by other means. The application of Pd to a Ni surface by the burnishing process, as used by Mizuno, achieves this requirement in two ways.

The first requirement is achieved because Pd is applied an amorphous form. Upon reaction with hydrogen, this non-crystalline structure would convert to the fcc structure at many independent sites. We can expect the resulting stress to cause many isolated gaps to form within the Pd layer. Additional gaps (cracks) would form at the Pd-Ni interface as result of the Pd expanding more than the Ni because the Pd reacts to a much greater extent than does Ni. Of great importance is that each of these processes takes place at many independent sites, with the stress not focused on only a few sites as is normally the case.

The second requirement involves the small particles of NiO that would be removed from the Ni surface and mixed with the Pd layer. A gap would be expected to form between the surrounding Pd metal and this inert inclusion, as hydrogen is lost from the structure.

If this description were correct, it would be expected to apply to all Pd found to produce LENR. I predict that commercial Pd observed to support LENR contains similar unintended inclusions that remain in the metal after the refining process and were not altered when the metal was formed into wire or sheet. Consequently, most pieces of the batch are found to produce LENR regardless of the final form created by physical means. This behavior explains why some batches of commercial Pd produce LENR for no obvious reason.

As an example, Fleischmann has described how boron is added to the molten Pd during the purification process to remove oxygen by formation of insoluble boron oxide, which floats to the surface and is physically removed. In view of the Storms model, the small pieces of oxide scattered throughout would make the Pd eventually nuclear active rather than the absence of oxygen.


The burnishing process was explored by rubbing a Pd rod against a 1 mm thick piece of Ni (1 cm x 2 cm) that had been previously electroplated with Pd. No NiO would be expected to be present on the Ni surface. As shown in Fig. 1, the amount of Pd transferred from the rod to the Ni was a linear function of the number of strokes after the first 50 strokes. In other words, each stroke transferred the same amount of Pd. The surface acquired a smooth bright metallic appearance where the rubbing had been applied. Fig. 2 shows islands of Pd, some of which appear to be poorly attached. This sample will be studied to determine what happens during reaction with D in the absence of included NiO.

FIGURE 1. Weight gain of the Ni sheet as result of pressing the edge of a Pd rod against the surface and moving it across the full length of the Ni plate. Each stroke was made at a random location on the surface so that most of the surface was eventually burnished with Pd.

FIGURE 2. SEM picture of a surface to which Pd was applied using the burnishing method. The Ni had been previously electroplated with Pd. Notice the islands of Pd. By eye, the surface looked polished and reflective where the burnishing had been applied.

A second sample of Ni was flame heated to about 800° C to form a visible (blue color) oxide layer after which it was burnished in the same way as the first sample. Although the blue color was removed to produce a bright metallic surface, no detectable weight increase (±0.00005 g) was produced after 600 strokes. Apparently the nature of the Ni surface affects the amount of Pd transferred to the surface. Consequently, the condition of the surface is revealed as being another important variable. This condition needs to be explored.

Any material that is not firmly attached to the surface would be expected to be pushed aside by the burnishing process and not be included in the Pd layer.

These samples will be first studied using electrolytic loading to determine how the Pd layer affects the uptake of D into the Ni using methods previously described.[5] The production of excess energy will be studied up to 85° C in D2O. If energy is detected, the samples will be studied in D2 gas up to 350°C.


Replicating exactly the procedure used by Mizuno is not as important as replicating what Mizuno caused. If he actually caused LENR, this result could be produced many different ways, as is typical of all natural phenomenon including LENR. Identifying the important variables becomes important so that the resulting LENR process can be replicated at will with total control. Some of these variables are suggested below as predictions. If these suggested methods cause LENR, this would provide further evidence that the NAE suggested by Storms is correct.

Although Storms also proposed a mechanism for the nuclear process, this part of the theory is not important when trying to create the conditions initiating the nuclear process because once the NAE forms, the nuclear process starts without any further knowledge or effort being required. Consequently, learning how to make and control the production of the NAE is the only important knowledge needed to cause and use LENR. Absence of this knowledge has been the reason for general rejection and why the various efforts have failed to make useful energy.


  1. Use of Ni that has been slightly oxidized by being heated in air to a temperature sufficient to cause thickening of the oxide layer will be more nuclear active than clean Ni.
  2. Use of Ni sbeet rather than a mesh will increase the effectiveness of the process by increasing the surface area of the deposited Pd.
  3. Use of other metals that form an oxide surface layer, such as Ag, Cu, Ti, and Fe, will be suitable as a substrate to which Pd is applied.
  4. Application of surface layers other than oxide to the substrate can be expected to improve the effectiveness of the process.
  5. Other metals that form hydrides, such as Rh, Ti, Zr, or Hf, should cause LENR when used as the burnished material.
  6. Use of softer alloys of Pd, such as Pd-Li, are expected to produce a more effective burnished layer compared to pure Pd. This alloy might also be more effective because it is more reactive to hydrogen than pure Pd.
  7. Burnished Pd can be expected to produce LENR when used as the cathode during electrolysis and gas discharge, as well as when the gas loading method of Mizuno is used.


(1) Mizuno, T. and J. Rothwell Increased Excess Heat from Palladium Deposited on Nickel (Preprint) in The 22nd International Conference for Condensed Matter Nuclear Science ICCF-22. 2019. Assisi, Italy.,

(2) Storms, E. How Basic Behavior of LENR can Guide A Search for an Explanation. JCMNS 2016, 20, 100.

Storms, E. K. A Theory of LENR Based on Crack Formation. Infinite Energy 2013, 19 (112), 24.

Storms, E. K. An Explanation of Low-energy Nuclear Reactions (Cold Fusion). J.Cond. Matter Nucl. Sci. 2012, 9, 85.

(3) Storms, E. Anomalous Energy Produced by PdD. JCMNS 2016, 20, 81.

(4) McKubre, M. C. H.; Crouch-Baker, S.; Riley, A. M.; Smedley, S. I.; Tanzella, F. L. Third International Conference on Cold Fusion, “Frontiers of Cold Fusion”, Held at: Nagoya Japan, 1992; p 5.

Castagna, E.; Sansovini, M.; Lecci, S.; Rufoloni, A.; Sarto, F.; Violante, V.; Knies, D.; Grabowski, K. S.; Hubler, G. K.; McKubre, M. al. 14th International Conference on Condensed Matter Nuclear Science, Washington, DC, 2008; p 444.

(5) Storms, E. In ICCF-21 Fort Collins, CO, 2018.

Relationship between the burnishing process used by Mizuno
and the Storms theory of NAE formation
[.pdf] by Edmund Storms Kiva Labs, Santa Fe, NM (8/1/19)

Locating the NAE

The search for the Nuclear Active Environment, the set of material conditions that causes LENR is a now a thirty-year pursuit and condensed matter nuclear scientists still debate where exactly the reaction takes place in the material to generate heat and transmutations.

To this day, few agree, and yet, without knowing the location of the reaction, engineering efforts are stymied in finding a recipe that both initiates and scale the effects.

Undoubtedly, the sheer number of LENR effects adds confusion. Is there one LENR mechanism able to explain all the different observable phenomenon? The preponderance of LENR models and theories certainly challenges this idea.

“Nature would not go about creating a variety of mechanisms to cause something so extraordinary and so rare,” says Edmund Storms. “Indeed, nature is known to be very stingy in finding the fewest number of ways of doing something and getting the job done. It’s called Occam’s Razor. The idea is that the simplest explanation is probably the more correct one.”

Dr. Edmund Storms spoke about the search for the NAE – and more – with Ruby Carat on the Cold Fusion Now! podcast.

Listen to Special Guest Edmund Storms on the Cold Fusion Now! podcast here.

“It’s very obvious that some unusual characteristic of the material has to exist in which the nuclear reaction will occur, and that particular condition is rarely formed. That’s what makes LENR so difficult to reproduce,” says Dr. Storms. “It’s really difficult to create the unique condition on purpose, especially if you don’t know what it is – with there being a number of conditions that would qualify. “

Super Abundant Vacancies as the NAE?

The idea of vacancies, places where atoms or nuclei should be but aren’t, is one of these candidates for the NAE. If an empty spot exists in a hydride where hydrogen is missing, perhaps that could be the location of the reaction.  A large number of such vacancies might account for the large amount of excess heat energy produced by these system

“People who favor the idea of a vacancy as the NAE find the Super Abundant Vacancy SAV concept particularly attractive because it contains lots of vacancies. The difficulty in creating SAVs is consistent with the difficulty in making cold fusion work”, says Storms.

“Furthermore, Peter Hagelstein, who is a firm advocate of the vacancy idea, has a complicated and highly mathematical description of how a vacancy would achieve a nuclear reaction. So he and his followers of this particular view are encouraged by having a possible structure containing even more vacancies than would normally be present.”

Two types of vacancies in Pd-D

“Vacancies are a characteristic of all materials. But, some materials have the ability to make vacancies of a certain kind, and other materials favor other types of vacancies. The concept of a vacancy is ambiguous”, describes Edmund Storms.

So far, the SAV model has been developed for systems that use the metal palladium and isotopes of hydrogen.

“In palladium-deuteride, which has been studied the most and has the most information, we know of two kinds of vacancies. A vacancy can form in the deuterium sublattice. In other words, positions are present where a deuterium  should be located, and there are positions where it should be located but it is not present, which is called a vacancy.”

“Vacancies can also form in the palladium atom positions.”

The figure shows a lattice structure with all the atom positions filled, with the green balls representing palladium.

“The number of vacancies in a material is sensitive to the thermodynamic properties of that material, and the thermodynamic properties are sensitive to temperature, pressure and composition. ”

“So if vacancies were in fact where the action was, then it should be possible, very conveniently and with foreknowledge, to create them in palladium-deuteride, because we know enough about that material and its basic thermodynamic and crystallographic properties to know how to create vacancies.”

“Unfortunately, that information does not allow the cold fusion reaction to be caused with any reliability. In fact, no relationship seems to exist between the presence of vacancies, which can be determined, and whether or not excess energy can be made.”

“So there’s no proof,” says Storms, “there’s no feedback from nature to show you that particular viewpoint is correct.”

Just having vacancies in palladium deuteride does not guarantee LENR. Something else is required. 

“The cold fusion reaction has been found to occur in a variety of materials, not just palladium-deuteride. Those materials have entirely different characteristics involving the ability to make vacancies. These vacancies seem to have no relationship to the ones in the palladium-deuteride. Yet, we still see the same nuclear effects.“

“We have to be very careful in imagining where this nuclear reaction actually occurs. In palladium, the reaction only occurs very near the surface when electrolysis is used. However, the surface region of the palladium cathode is not pure palladium. It’s a very complex alloy and is also very complex metalgraphically. So, a lot is going on in the material without a relationship to how people imagine palladium to behave.”

When analyzing palladium-deuteride theoretically, Edmund Storms says that “People don’t realize they’re not looking at something ideal as is described in the literature. They’re looking at a moving target. They’re looking at material that’s changed every time they do something to it. “

“Every time palladium is reacted with hydrogen or deuterium, then remove, and react again, the material is changed.  The characteristics are changed – thermodynamically, the shape, the size, the hardness- they’re all different. So how can a moving target be studied?”

Dr. Storms believes no correlation exists between the various materials producing LENR and the presence of vacancies because he sees no physical evidence relating vacancies with LENR.

“The idea of vacancies simply does not fit with the way this reaction behaves.”

“On the other hand, one characteristic that is universal and would fit is cracks or gaps in the structure. Those are totally universal and a correlation between their presence and LENR can be seen, so that’s where I focus my attention.”

Evidence for nano-cracks is universal

After years of experimental work, Dr. Storms became frustrated by failure, and wanted a direction for research. He looked to the theoretical models for guidance. Sadly, little of the mathematical machinations could tether to the reality of experimental procedure.

“I needed a guide to figure out how to treat a material to encourage it to produce the LENR effect, so I looked around at the various suggested unique features of a material, trying to figure out which one might be important.”

“After a considerable amount of trial-and-error, and logical deduction, I came to the conclusion that the only feature that made any sense were cracks.”

In 2014, Edmund Storms published The Explanation of Low Energy Nuclear Reaction An Examination of the Relationship Between Observation and Explanation, a book surveying the theories proposed to model LENR with critiques that systematically matched experimental evidence to each model’s conclusions. Together with logical deduction in thermodynamical arguments, he appraised their viability. In the end, he proposed one of his own models developed primarily from LENR observational data.

See article on Progress Report #6

When the right-sized nano-crack forms in Pd-D, Dr. Storms imagines “the hydrogen atoms would try to go into these cracks and fill them, and there would be a chemical relationship created between the deuterons occupying this crack.

“And then the question is, what would that chemical interaction do from a nuclear point of view.” Following the logic, Storms bumped up against the unknown.

“I was encouraged to believe that once this chemical structure formed, which could be described as a linear molecule of deuterons stuck together, one after another, this would start to resonate and the resonance would move the nuclei closer together periodically. “

“As the distance shorted, the nuclei in the molecule would suddenly discover they were on the way to a fusion reaction – not all the way, but with a possibility that energy could be released from their nucleus if they just did a couple things we don’t yet understand at this point.”

Storms’ idea of a nano-space filled with hydrogen creating some unique type of chemical structure is not far-fetched. Nano-technologies have uncovered many strange new phenomenon, where quantum effects are prominent and little understood. In this case, a linear hydrogen molecule is proposed to resonate to some stimulus, and engage in a new nuclear process of a gradually progressive fusion.

“I imagineas this structure resonated, the energy would be given off in small bits – not all at once as it is the case for hot fusion. In hot fusion, the energy goes off instantaneously. In cold fusion, the energy would go off slowly. I describe hot fusion as being fast fusion and cold fusion being slow fusion.”

[fvplayer id="1"]

See the full documentary HYDROTON A Model of Cold Fusion on the Cold Fusion Now! Youtube page.

Resonating hydrogen nuclei release photons upon critical distance approach.
Graphic from The Explanation of Low Energy Nuclear Reaction.

Storms believes that slow fusion has been happening all along in various environments, but was overlooked by scientists in early fusion research because everyone was applying energy to the nuclei in order to overcome the Coulomb barrier by brute force, which automatically makes the fusion energy come off instantaneously.

“But within a linear molecule in a nano-gap, this new mechanism could exert itself, and so I imagined a resonance process would initiate a new kind of nuclear reaction.  This has always been possible but people never applied the right conditions for it to manifest itself.”

“This new phenomenon of nature might be a good source of energy and, because this is an entirely new kind of nuclear interaction, understanding might be rewarded by a Nobel prize.”

Detectable features of the Hydroton model

Dr. Storms believes the full explanation will be years in the making, and dozens of graduate students will have opportunities to get that prize. For now, finding a mathematical description for an unknown nuclear reaction remains a difficult next step. Conventional science won’t pay attention to the behavior unless a working LENR device is produced or a mathematical framework is accepted as a model.

“At this point I do not know – nor does anybody else know – how to describe the Hydroton model mathematically in a way that would make this acceptable to mainstream scientists.”

Still,  some features of Storms’ nano-NAE might provide quantitative parameters. Elaborating on the “slow” fusion process, Storms explains how smaller bits of a nuclei’s mass can turn into energy, and justifies the reasoning with observed experimental data.

“I believe the mass is converted to energy and the energy appears as a photon of a frequency (or wavelength or energy) which is not as large as a normal nuclear reaction would produce, but is large enough so that the energy contained in that photon is able to move away from the source, and be deposited and turned into heat as it passes through matter further away in the apparatus.”

Somehow, resonant nuclei are proposed to lose only a tiny bit of mass as they move closer, with that little bit of mass being converted into two photons going in opposite directions, as is required to conserve momentum. Both photons have enough energy to leave the nano-gap, with the energy being turned into heat elsewhere in the apparatus.  But the photons do not have enough energy to leave the apparatus, as evidenced by the lack of radiation detected outside the apparatus.

“We know precisely how the energy of a photon is converted to heat as it passes through matter. That’s well known. And these photons are no different than any other photon, so they just simply pass through matter, and lose energy as photon energy is converted to heat energy, which is called a phonon.”

“Nevertheless, some do have sufficient energy to get to a detector and are detected. A little bit of radiation is in fact seen experimentally. But it is not nearly enough to explain the amount of heat that is being given off. And I argue that’s because 99% of the photons that are made, are absorbed before they get outside to the detector.”

Storms estimates that the photon energy is “probably somewhere around 10keV. When the phonons are very much more energetic than that, they would be detectable.”

While heat is the main LENR effect, transmutation products are also found. Storms requires the Hydroton model to address this LENR effect as well.

Fusion and fission can occur simultaneously

“The linear molecule, that I call a hydroton, can attach itself to other atoms that happen to be nearby, such as impurity atoms that happen to be out of place in the NAE, for example in the crack with other debris.“

“When the fusion reaction takes place, those other nuclei that are attached chemically to the Hydroton experience ambiguity about their nuclear state. The energy being generated by the fusion reaction is re-directed to force one or more of these hydrogen nuclei into the nuclei of this attached atom.  In other words, fusion precedes and is required for transmutation to take place.”

Talking about the Pd-D systems, Storms says, “Normally, palladium contains some platinum. But after the LENR reaction has occurred over a period of time, many other elements are present as well.  A couple of these elements are heavier than palladium. Obviously something has gone into the palladium nucleus and stayed there. “

“On the other hand, most of these nuclear products are lighter than palladium, but when the weights of two of these products are added, the sum nearly equals the weight of palladium. In other words, the Pd nucleus seems to have split into two unequal parts after some D or H have been added to the nucleus.”

“It’s fascinating that this is a combination of fusion and fission taking place simultaneously in the material. That’s an entirely new concept in its own right. ”

But Storms believes that “this process requires fusion of hydrogen to provide the energy to overcome the Coulomb barrier, which would stand in the way of such a thing happening normally.”

 All of the hydrogen isotopes  (protons, deuterons, and tritons) will all fuse with each other. The mechanism that causes fusion is the same in each case, but the nuclear products of each of those reactions if different. Likewise, the transmutation products are all different but the same mechanism causes the process.

Testing LENR models requires a reaction to work

The only way to determine whether or not SAVs or nano-cracks are where the reaction takes place is to test the ideas. However, testing LENR theories requires the ability to make a reaction happen on demand, and that difficulty is part of the problem in determining which model fits best.

Says Edmund Storms, “To learn, the reaction needs to happen. Negative results aren’t very useful because millions of events can cause the reaction not to occur.  Only a couple conditions may be required to make it work. So, when the reaction doesn’t happen, which of the many ways failure might be caused is difficult to identify. There are just too many of them.”

“But if it works, then the conditions that apply can be identified. But, it works so seldom the information has accumulated only very slowly over the last  thirty years.”

“When the unique condition is identified, than active material could made with reliability. That’s what we’re striving to accomplish at this point. We have to know the cause of the nuclear process.  The only way of finding out is to explore using the right tools. Unfortunately, very few people have access to those tools.”

Impurities are the key to making nano-cracks

Edmund Storms’ is currently working in his private Kiva Labs treating palladium in various ways trying to encourage the production of nano-spaces within the metal.

He says “It’s very clear why impurities are important. When people have attempted to study very pure palladium, they’ve failed. Successful palladium has identifiable impurities in it. The problem is, we don’t know what those impurities are doing – their true concentration or their interaction.”

“Impurities at a grain boundary make a grain boundary weaker and, therefore, more susceptible to cracking. But, a lot of little cracks are required, not a few big cracks. Big cracks don’t work, and big cracks actually prevent the formation of small cracks. Making a large number of small cracks is difficult because Nature wants to make large cracks.” 

“So, trying to get the material to form a lot of little cracks is the challenge, although using suitable impurities seems to improve success. However, the number of possible impurities and their combinations is close to infinity. Consequently, finding the right combination by trial and error becomes a matter of luck!”

“I describe what I do as simply buying a lottery ticket and waiting to win. Every once in a while, I win a small prize, but so far, I have not won the lottery.

I buy a ticket, and see if I’m going to win, and if don’t, I buy another ticket.”

Edmund Storms is hopeful that a solution will be found, either by a lab in the U.S., or in one of the many countries around the globe desperate for energy.

“I’m optimistic that a solution will be found. However, this particular phenomenon of nature is one of the more difficult ones to figure out. It’s difficult because it has no theory behind it, it is not something science can conveniently understand, but also a very negative attitude is being applied by conventional scientists.”

“Fortunately, a few individuals with a lot of money have  set up laboratories in the US. If they persist, I expect they will figure it out.”

“I know this is happening in other countries as well. For example Japan has a very active program that is making progress in understanding. I suspect China also has a program, with both of these countries having a huge incentive to figure out how this works; the United States, not so much.

See also:

Q&A on the NAEShift theoretical focus from nuclear consequences to chemical beginnings

LENR behaviors that theory must explain

How to evaluate LENR theory?

How basic behavior of LENR can guide a search for an explanation

Q&A on the NAE

Peter Gluck of Ego-out engages Edmund Storms on the NAE

Question If NAE are nanocracks – why is there a limit for their number/density? What is the limiting factor?

Answer The cracks are generated by stress generated by the change in volume when D reacts with Pd. The cracks form at weak regions in the structure. A limit to the number of weak regions exists in a structure. Once crack formation has relieved the stress, no further cracks can form. This is basic material behavior having nothing unusual about the process until the Hydroton forms. For reasons yet unknown, once the critical size crack forms, it can then support the LENR process.

Question Are those active cracks special in some way or is it only a problem of size?

Answer The gap size is the critical condition. A size too large can not support LENR.

Question If temperature is a factor, how?

Answer Temperature determines how fast D can get to the NAE by diffusion from its site in the surrounding lattice.

Question Will the processes at 70, 400, 800, 12000 C be qualitatively the same, or will be some changes in the mechanism?

Answer The mechanism is not changed by temperature. Temperature ONLY changes how fast the fuel (D or H) can get to where it can fuse.

Question How and why do the NAE resist and survive the nuclear process?

Answer The gap is filled with a chemical structure consisting of chains of D. These chains (Hydrotons) fuse by an unknown process and are destroyed. The gap remains in which more Hydroton can form. The gap can remain because the energy is released slowly without causing destruction of the local lattice structure. As I have been saying, one unique and required feature of LENR is the slow rate at which energy is released. Of course, this process is only slow when compared to the hot fusion process. Cold fusion is actually better described as slow fusion.

Question Piantelli said he had excess heat for months. The Rossi heat effect seems to be OK for 6 months. Why is the duration of the PdD excess heat a problem?

Answer Many people have seen the process last for a long time. In my case, it stops only when I cause it to stop because want to go on to other studies.

Question What do you think and which factors play a role for the claimed greater density of NAE in NiH then in PdD – metallurgy, morphology? Perhaps we have to consider that Pd D works with deuterium and NiH with protium.

Answer Ni does not take up as much hydrogen isotope as Pd, hence the stress is less compared to Pd. Also, Ni is stronger than Pd, thereby preventing the stress from producing much cracking. Rossi found a way to produce the active cracks in Ni powder where each grain could contain a number of active cracks. Arata was able to activate Pd powder with impressive power production. Clearly, powder allows more NAE to form within the same weight of material. Work in Japan is taking advantage of this conclusion using Pd.

How basic behavior of LENR can guide a search for an explanation

How basic behavior of LENR can guide a search for an explanation – Revised by Edmund Storms LENRGY LLC Santa Fe, NM, 87501 (4/2/16)
download pdf

The LENR effect was identified 27 years ago by Profs. Fleischmann and Pons as production of extra energy by a normal chemical structure, in this case PdD. Over a thousand published papers now support the discovery and the energy is shown to result from fusion of hydrogen isotopes without the need to apply energy and without energetic radiation being produced.

By conventional standards, the claims are impossible. Nevertheless, a new phenomenon has been discovered requiring acceptance and understanding. The major behaviors and their present understanding are described in this paper and are used to suggest how an effective explanation might be constructed. Once again, science has been forced to either reject the obvious or accept the impossible.

In this case, the normal skepticism needs to be ignored in order to determine if this promised energy source is real and can provide the ideal energy so critically needed.

Low Energy Nuclear Reaction (LENR) or Cold Fusion was introduced to the world 27 years ago by Fleischmann and Pons(1), Univ. Utah, with expectation of great benefit to mankind. Instead, their claim for a new kind of fusion was quickly rejected (2), an attitude that continues even today. Over the years, several thousand papers addressed the subject with a large fraction supporting the claim(3). Mastery of about 1000 papers is now required to understand the effect.

A description of all the known behaviors and all proposed explanations would require much more than a single review paper. Here, only the tip of the large iceberg will be examined along with some original results not published elsewhere. The selection of behaviors is designed to focus attention on only the essential conditions required to cause the LENR effect.

Limits will be set using observed behavior in order to evaluate proposed explanations. The new kind of nuclear interaction needed to explain LENR is expected to fall within these limits. In other words, boundaries need to be identified to keep the imagination from running wild. The LENR effect is assumed consistent with all rules normally applied to conventional chemical and nuclear behavior. Nevertheless, a novel mechanism is clearly operating and needs to be acknowledged.

Many conditions needing consideration are not quanitative or lend themselves to mathematical analysis. While frustrating to conventional scientists, these unique behaviors must be made part of a successful explanation. Quantitative behaviors can be used to expand understanding once the basic process is understood.

The present paper has two parts, with the first describing the important observations on which an explanation must be based. The second part uses a few assumptions combined with these chosen behaviors to provide an explanation about how LENR can be initiated and the resulting mechanism.

The LENR mechanism is clearly much different from that causing the conventional hot fusion process. Ironically, this conflict is used to reject the claims for LENR rather than guiding a search for the cause of the difference. This difference must be clearly understood before the novel features of LENR can be explored. Consequently, the hot fusion process is discussed first.

Unlike hot fusion, LENR takes place in and requires a chemical structure to operate. The role of this structure must be understood before physics is applied to understanding subsequent nuclear process. Clearly, a unique and rare condition must form in the structure in which a nuclear process can function. The nature of this condition is discussed following the discussion of hot fusion.

The nature of the hot fusion mechanism
Because LENR involves fusion of hydrogen, the conventional fusion process, called hot fusion, needs to be understood in relation to LENR. For the last 75 years, the hot fusion method has been applied in various ways, including in the ITER(4) facility now being constructed in France using magnetic confinement and in the National Ignition Facility(5) in Livermore, CA with lasers being used to create the required energetic plasma. These methods use high energy to overcome the Coulomb barrier by brute force.

This large applied energy changes the fusion rate in plasma as shown by the log-log plot in Fig. 1. The energy applied to LENR is no more than 1 eV.

FIGURE 1. Effect of energy on the fusion rate in plasma for different combinations of hydrogen isotopes as result of the hot fusion process. (Wikipedia)

Hot fusion can also be initiated by bombarding a material by energetic deuterons. In this case, the fusion rate is slightly greater at low applied energy compared to when the same energy is applied to plasma, as can be seen in Fig. 2. Even so, the overall fusion rate

FIGURE 2. Comparison between the fusion rate in plasma (Bare Cross-Section) and when fusion occurs in a solid material as the result of applying energy to the bombarding D+ ions, as shown by the X-axis. A value of unity occurs when the rate in plasma is equal to the rate using a target material.(6)

decreases as applied energy is reduced. In other words, the environment in a material can slightly increase the fusion rate but it does not significantly offset the reduction in the rate as applied energy is lowered. While the electrons clearly help lower the barrier to achieve hot fusion, this effect alone would seem too small to explain the LENR process, although it might make a small contribution. In any case, the measured shielding effect applies only to the hot fusion mechanism.

Perhaps more effective shielding during LENR might be expected if the shielding electrons were contained in the unique nuclear-environment rather than having a random and lower concentration in the general where hot fusion interaction takes place. An evaluation of just how the electrons function during LENR compared to hot fusion requires LENR not be viewed as extension of hot fusion.

Once the nuclei of deuterium have fused by hot fusion, the assembly breaks into fragments, which dissipate the excess mass-energy as kinetic energy. Easily detected energetic neutrons, tritium, protons, and He3 are produced in equal amounts. This process is understood and is consistent with conventional expectations. A similar result occurs when muons are used to bring the nuclei close enough to cause fusion. In other words, no matter whether energy is used to overcome the Coulomb barrier by brute force or the separation is reduced by using the heavy muon(7-10), the same energy dissipation process results.

No other method for energy dissipation as result of a fusion reaction was known to occur in nature until “cold fusion” was discovered. Clearly, the mechanisms causing hot fusion and cold fusion are significantly different because LENR does not lead to fragmentation of the nuclear products.

Cold fusion is novel because it does not require significant applied energy to overcome the Coulomb barrier and it does not result in fragmentation of the fusion product as occurs during hot fusion. This difference has caused much skepticism about the reality of LENR. After all, experience and teaching deny any possibility of spontaneous fusion taking place in an ordinary chemical structure without the need to apply significant energy.

This apparent contradiction is resolved by proposing the cold fusion process takes place in a unique structure, called the nuclear-active-environment (NAE) where a novel mechanism can operate. Questions about how this structure forms, where in the chemical structure this formation takes place, the nature of the unique conditions at the NAE, and the nuclear mechanism operating therein are explored later in this paper.

Role of chemical structure
Because the LENR process takes place within a chemical structure, it must play by the rules such a structure imposes. This conclusion is critical to understanding the LENR process. These rules include the Laws of Thermodynamics and the Phase Rule. Local energy cannot spontaneously increase without violating the Second Law of Thermodynamics and the local concentration of ambient energy is limited by how much energy the chemical bonds can tolerate before melting or decomposition results. Simply stated, energy cannot go up hill and its density cannot exceed the strength of the container.

If a novel mechanism is proposed to concentrate energy in order to cause nuclear fusion, why it is not found to affect chemical reactions? After all, if such a process were possible, it would be expected to operate in normal chemicals and cause chemical effects before the local energy had increased enough to cause a nuclear reaction.

For example, the mechanism of energy transfer to electrons proposed by Widom and Larsen(11, 12) would be expected to make many normal chemical compounds unstable. Furthermore, how such a proposed violation of the Second Law of Thermodynamics can function in PdD needs to be justified. Similar conflicts with the laws of thermodynamics and normal chemical behavior create a similar weakness in many explanations now being proposed.

Normally, nuclear reactions of any kind are not affected by the chemical environment because the energy states are too different and local energy density cannot be increased according to the Second Law of Thermodynamics. Amazingly, the normal level of local ambient energy is sufficient to initiate the LENR process at high rate on rare occasions. Explaining how this “magic” takes place is the first of two basic challenges. The second challenge involves how the resulting energy is dissipated as heat.

Once fusion occurs, the structure must convert the excess mass-energy to heat without causing local melting. After all, local destruction of the active site would stop further heat production and severely limit the amount of energy produced by LENR, which is not experienced.

Although local melting is occasionally seen, it is not sufficient to create a limit to the amount of power or its stability over time. Thus, both the presence of a little local melting and the absence of extensive melting have to be explained.

Several different chemical structures have been found to support LENR, with PdD given the most attention. Consequently, PdD is the focus of further discussion.

Palladium deuteride has attracted interest for about the last 100 years(13) during which time it has been studied extensively. Although the palladium can acquire hydrogen up to about PdD0.98±0.02, nothing about the overall behavior would suggest an ability to host a fusion reaction.

The structure is face-centered-cubic (fcc) and exists in two slightly different forms having the same crystal structure based on the Pd sublattice. The alpha phase occurs between pure Pd and about PdD0.05, and the beta phase forms near PdD0.6 when 1 atm of D2 pressure is applied at 20° C. A two-phase region exists between these two compositions. The beta phase continues to acquire D atoms at random sites in the fcc sublattice as pressure is increased, finally reaching the upper limit of the fcc phase.

Fig 3 shows the structure when all lattice sites are fully filled by deuterium. Another phase is expected to form and grow in amount as the overall D/Pd ratio increases beyond the upper limit to the fcc phase, similar to the behavior of other metallic hydrides.(14, 15) In other words, any composition in excess of PdD0.98 would be expected to be a two-phase mixture of the fcc and another phase having a different structure and increased stoichiometry.

In the absence of the rare double occupancy(16, 17) of normal lattice sites, the deuterium nuclei are too far apart to fuse. Achieving close approach without violating the rules of chemistry and without producing fragmentation typical of hot fusion remains a serious challenge discussed in a later section.

Identifying where the NAE is located and what form it takes in the material has created a problem for many proposed explanations. Many explanations assume the fusion process takes place in a modification of the fcc structure when the D/Pd ratio is large. Formation of such a structure would be apparent because its formation would cause changes in various properties.

A search for the expected change can be made by examining several known properties, such as resistivity and lattice parameter as a function of D/Pd. The lattice parameter can be seen to have a linear(18-21) relationship to composition with no indication of a two-phase region forming within the limits of the beta phase. Both the pressure and resistivity(22) also show no sign of a change in crystal structure(23) over the composition range of interest. In every way, all properties are consistent with a normal fcc structure being present within the composition range in which LENR is found to occur.

FIGURE 3. Crystal structure of the face-centered-cubic PdD when all deuterium sites (small purple) are filled. (Wikipedia)

On the other hand, Fukai(24) reported formation of a phase change when high pressure is applied at high temperature to PdH. This structure is proposed to also form under normal conditions during electrodeposition.(25) Superabundant vacancies are proposed to form in the metal sublattice. A similar structure change is proposed to be caused by deformation induced vacancies.(26) This behavior might also occur when repeated loading and deloading of PdD causes the structure to expand, producing what Storms(27) calls excess volume. Nevertheless, this condition does not explain LENR because the presence of excess volume over about 2% is found to inhibit LENR(28) rather than aid the reaction as would be expected if formation of metal atom vacancies were required to support LENR.

Even though the proposed vacancies are not associated with the LENR process, a unique condition is expected to form in the PdD in order for LENR to take place. This conclusion is consistent with common experience. When a piece of Pd is found to be nuclear active, most of the entire batch is also found to be nuclear active.

In addition, once the sample is made nuclear active, the LENR process using that piece becomes reproducible and robust. Obviously, treatment of the entire batch of Pd creates stable conditions in which the LENR process can be initiated and supported for extended times.

Unfortunately, these conditions are hard to produce because their unique characteristic is unknown and rarely formed. Even when certain important initial conditions are present, an additional special treatment is required before the nuclear process can be produced by PdD. These observations are important because they show a treatment is possible to make large amounts of palladium nuclear active. A suggested combination of conditions is described later in this paper.

Initially, the LENR reaction was thought to take place anywhere in the PdD structure. Later studies reveal both helium(29, 30) and tritium(31) form only very near the surface and not within the bulk material or on the surface where nanoparticles might be present when electrolysis is used. Transmutation products are also detected mainly in the surface region.

Based on the known behavior of helium in PdH(32, 33), the nuclear reactions apparently take place within a region perhaps no more than 10 μm wide, extending from the surface. We now need to discover the nature of the unique condition forming within this narrow band. The condition does not appear to involve a phase change, creation of vacancies in the hydride structure, creation of nanoparticles on the surface, nor does it require a high concentration of deuterium.

Formation of NAE would appear to require conditions formed by a unique process, which apparently only forms near the surface.


Formation of the NAE
In order for fusion to take place, the reacting nuclei must obviously be in the same place at the same time. This condition is not normally present. Normally, the D atoms are located too distant to fuse.

For atoms to assemble in a chemical structure, Gibbs energy must be released while the material achieves a different stable state. Generally, the atoms in a chemical structure are close to their equilibrium condition and do not contain excess energy or have the ability to form another crystal structure unless the conditions are significantly changed. Simply increasing the D/Pd ratio does not create sufficient energy to change the structure in order to initiate the LENR process.

Furthermore, for the process to be as rare and as difficult to initiate as is observed, the conditions for releasing this energy must be equally rare and difficult to create. To make the problem even more challenging, once the NAE is formed, LENR must operate at a significant rate without further change in conditions. These conditions immediately place a limit on any proposed condition in which LENR can take place.

Most samples of PdD do not host the LENR process regardless of the deuterium content presumably because the unique NAE is not initially present in the material. This conclusion suggests the NAE is not related to any of the features normally found in a chemical structure, such as vacancies, dislocations, and occupancy of unusual lattice sites. After all, if the NAE were related to these common features, the effect would be initiated more easily and more often.

Multiple occupancy of the normal deuterium-atom vacancy must also be rejected based on this conclusion because, if such occupancy were possible, it would be present in all material under normal conditions and cause LENR with greater frequency.

Nevertheless, a rare condition must form as result of some kind of treatment in order to account for occasional success. Failure to initiate LENR simply means this treatment was not successful in producing the required NAE. Once produced, the NAE appears to be stable and relatively constant in amount as indicated by production of relatively constant power.

Experience reveals another important behavior. When part of a batch of palladium can be made nuclear active, the remainder of the batch is found to be active. This activation treatment does not simply involve reaction with D but also requires extended electrolysis and/or repeated deloading and loading with D.

This behavior is important because it revels a condition can be created throughout an entire batch of Pd as result of a common treatment that can eventually host the LENR process. In other words, the physical treatment before reacting with deuterium affects later initiation of LENR.

Once the nuclei are assembled in the NAE, a unique process must reduce the Coulomb barrier perhaps by a tunneling mechanism without using energy beyond that which is normally available at room temperature. Immediately, we are confronted by a problem. Normal chemical structures are known not to support nuclear reactions without significant energy being applied to bombarding ions. After all, the Coulomb barrier keeps nuclei separated and allows chemical structures to form in the first place by interaction between the electrons.

The energy required to force the nuclei close enough to fuse is well in excess of the energy holding the atoms in the structure and in excess of the electron energy. This well-known and accepted behavior suggests a need to form a novel
arrangement between the nuclei in the NAE designed to avoid this limitation.

In summary, two separate processes have to be considered. The first is creation of the NAE. The second is formation of a structure of H and/or D within the NAE having the ability to fuse. This nuclear process is separate from the structure of the NAE, but needs to be consistent with it.

A description of the fusion process is a job for physics while identification of the NAE is a job for chemistry. Thus, we are forced to acknowledge an uncomfortable marriage between two normally independent branches of science, with chemistry being applied first to identify the NAE.

Nature of the NAE
Two different kinds of NAE have been suggested. Many researchers place the LENR process in the normal crystal structure where vacancies or dislocations might be present. Different variations of the crystal lattice are proposed, including formation of nanoparticles and active sites on the surface of the structure.

In contrast, Storms(34) places the NAE in cracks having a critically small gap, which are separate from and chemically independent of the crystal structure. Such an environment can have properties much different from a crystal structure, including a high negative charge.

Resolving this fundamental difference in proposed location of the NAE is critical to understanding the LENR process because the chosen location sets the logic on the correct path to discovering the mechanism. A choice of the wrong path will result in arriving at the wrong understanding.

In order to contrast these two proposed conditions, the well documented suggestion by Hagelstein et al.(35) is explored. The Hagelstein idea is based on formation of a new phase in the normal fcc structure, such as suggested by Fukai and Okuma(36). This phase is proposed to form on occasion after deuterium content has exceeded D/Pd=0.85, thereby causing formation of palladium atom vacancies.

Deuterium atoms fill the vacant sites and form a structure in which fusion is proposed to occur. The resulting mass-energy is dissipated by phonons.

Evidence for this proposed phase change could be obtained by searching for a discontinuity in the various properties. As noted above, such a search reveals no evidence for a phase change within the composition range of the beta phase.

In addition, X-ray and neutron diffraction studies of the face-centered-cubic structure reveal no phase change in this composition range. Using a similar argument, all the other explanations of LENR involving changes in gross structure can be rejected.

The NAE is apparently a feature outside of the thermodynamic behavior and its presence does not affect the measured physical properties. While arguments based on the absence of behavior are usually ignored, in this case the failure of the physical properties to respond to the change required to form a NAE is an important characteristic of the LENR process.

The author, in several previous papers (37-39), proposes the NAE resides in nanocracks resulting from stress relief. These gaps exist outside of the chemical properties and are not influenced by the limitations imposed by the chemical structure.

As long as a gap having a critically small width is created, deuterons are proposed to enter the gap and form a structure that can be described in many different ways. This structure then experiences fusion by a novel mechanism.

The required gap width is rarely created because most cracks would quickly become too wide to host the required hydrogen structure. Success in creating the NAE involves creating modest stress and applying it to a structure containing many weak regions having similar ability to form small cracks.

This condition might be created by accident as result of various intended and accidental treatments applied during a study, thus accounting for occasional success without apparent reason. Although large cracks are often seen when LENR occurs, the cracks having the ability to act as the NAE are too small to be easily detected and can be overlooked.

In fact, unless these structures are sought using high magnification, they would be impossible to detect. Experience shows the critical initial condition can also be created in a batch of material by a yet to be identified pretreatment. This realization encourages the search for such a treatment from which production of large amounts of nuclear active material can be expected to result.

Deciding which explanation should be explored is important because they each propose entirely different treatments to cause the LENR process. The wrong choice of explanation can lead a researcher down the wrong path with much wasted effort.

Power production
The LENR effect was first identified by its ability to produce energy in amounts greater than would be possible by any chemical reaction. This energy has been produced when Pd is used as the cathode in an electrolytic cell using an electrolyte consisting of D2O+LiOD.

When a Pd cathode is initially subjected to this treatment, the deuterium concentration in the Pd increases while energy is absorbed by the reaction, as shown in Fig. 4. Energy is absorbed because the energy used to decompose the D2O into D2 and O2 is greater than is recovered when the resulting D2 reacts with Pd, thereby causing an overall endothermic reaction.

FIGURE 4. The D/Pd ratio and resulting power when Pd is reacted with D2O using the electrolytic method. All D made available by the applied current initially reacts with the Pd. The amount reacted is reduced only gradually as the upper limit is reached. No excess energy is produced even after the average D/Pd ratio becomes very large. The total amount of energy/mole Pd absorbed by the process is noted. (Storms,

The enthalpy of formation for deuterium can be calculated using the data in Fig. 4. For this purpose, the total amount of D reacted every six minutes is divided by the amount of energy absorbed during this time, from which the amount of energy used to decomposed the D2O is subtracted.

As can be seen in Fig. 5, the electrolytic method applied to a solid piece of Pd gives values for the partial enthalpy of formation similar to the values obtained when D2 is reacted directly with Pd nanopowder. Both reactions show that chemical energy is released when Pd reacts with D2 and the amount decreases as the D/Pd ratio increases.

FIGURE 5. Enthalpy of formation calculated using the data shown in Fig. 4 based on the amount of D reacted every 6 minutes, the amount of power measured during this time, and the amount of energy used to decompose the D2O from which the D results. The reaction of D2 with Pd is exothermic. The Sakamoto et al. (40) line is obtained using their reported linear equation, which is then extrapolated from D/Pd= 0.85 to 0.98, and their reported D2 pressure. The pressure of D2 is also obtained from the review by Santandrea and Behrens(41). (Storms,

The equilibrium deuterium activity, as pressure, is also plotted to show the large range in values being applied to the material. This quantity can be described as pressure only when the gas phase is present and is in equilibrium with the solid. The deviation from ideal behavior, called fugacity, is not taken into account.

No excess energy was produced even though a very high D/Pd ratio was reached. Additional treatment was later required to start the LENR process.

No additional phase forms in this composition range, such as proposed by Fukai, as indicated by the smooth unbroken variation of ΔH and pressure.

Also, the smooth unbroken change in resistivity observed by McKubre et al.(22) while LENR took place is consistent with this conclusion.

The effect of temperature on power production for various D/Pd ratios is compared in Fig. 6. Samples having D/Pd = 0.80 and 0.48 produce the same amount of power at the same temperature. Removal of all deuterium stops power production. Clearly, power is not as sensitive to the deuterium content as previous studies suggest(42). Nevertheless, some D is required for LENR to function.

The Arrhenius plot (Fig. 7), using the data in Fig. 6 (D/Pd=0.8), shows the activation energy for the LENR process to be nearly equal to the value for diffusion of D in PdD. In other words, the rate of the fusion process is sensitive to the rate at which D can get to the site where fusion takes place and it is not sensitive to the concentration of D in the surrounding lattice.

The fusion process can be proposed to rapidly convert deuterium in the NAE to fusion products, after which new D has to move relatively slowly from the surrounding lattice in order to supply additional fuel to the active sites.
The rate of energy production is determined by the rate at which D can get to the NAE.

By analogy, this is similar to the speed of a car being determined by how fast gas is delivered to the engine and not related to the amount of gas in the tank or the reaction rate within each cylinder. The resulting equation allows the resulting power to be predicted when temperature is increased.

FIGURE 6. Effect of temperature on power production when three different amounts of deuterium are present in the sample. (Storms,

FIGURE 7. Comparison between the rate of diffusion of D in PdD and production of LENR power as a function of 1/T. The similar slopes created by the data suggest both processes are affected by the same mechanism, i.e. diffusion of D though PdD. (43)

Probability of forming the NAE
Figure 8 compares power produced by 157 studies reported before 2007. Notice that most studies produce power at relative low levels. On a few occasions, a large amount of power is observed with the number of reports rapidly decreasing as the reported power increases. The number of reports, shown in Fig. 8 can be compared to

FIGURE 8. Histogram of power production vs the number of reported values. A probability function, shown as the dashed line, is used to fit the data to bins at 10 watt intervals.

predicted behavior based on an assumed probability of causing increased power once power production is possible. In other words, the probability of forming additional NAE once the conditions allow some NAE to form can be estimated and compared to the behavior to see if the assumption fits.

If 300 attempts are made to initiate LENR and the probability of producing 10 watts is 0.3, the probability of producing 20 watts would be 0.3×0.3, and the probability of producing 30 watts would be 0.3×0.3×0.3 etc.

The number of predicted successful observations at each power level is shown by the dashed line. The relatively good fit to the observed behavior suggests the power is caused by an increasing number of active sites whose production is caused by a random process, with more power resulting as the number of NAE sites is increased by a process having low probability. The probability of producing any power at all would be expected to be much less than producing additional power once conditions allow some NAE to form.

Continue reading How basic behavior of LENR can guide a search for an explanation

How basic behavior of LENR can guide a search for an explanation pdf TOC
The nature of the hot fusion mechanism
Role of chemical structure
Formation of the NAE
Nature of the NAE
Power Production
Probability of forming the NAE
Helium Production
Tritium Production
Transmutation Production
Radiation Production
LENR Initiation as a Chemical Reaction
Nuclear Process Applied to LENR
Role of h4 formation
Consequence of LENR using a mixture of d and p
How does the fusion process work?
Reduction of Coulomb barrier
Dissipation of excess mass energy
Photons as the energy dissipation method
Electrons as the energy dissipation method
Phonons as the energy dissipation method
Storage of energy after fusion
Effect of different variables
Effect of laser irradiation
Creation of the NAE

Shift theoretical focus from nuclear consequences to chemical beginnings

I would like to emphasize one other aspect of LENR that is frequently overlooked: Fusion can be caused by two different mechanisms.

The common one, called hot fusion, involves applying high energy to the reacting nuclei. This approach takes advantage of the increased reaction rate applied energy provides. Science has ignored what happens when fusion takes place at low energy because the rates are too low to study the process.

Discovery of LENR, called cold fusion, has revealed how the fusion rate can be increased without using applied energy. However this process requires a unique condition I identify as the NAE. As many people have noted, the NAE acts like a catalyst so that applied energy is no longer required. This being the case, the essential understanding of the LENR process resides in the nature of the NAE. Creation of the NAE makes LENR possible and the unique fusion mechanism operates only within the confines of the NAE.

A condition is created within the NAE in which the Coulomb barrier can be overcome without applied energy, and mass-energy can be converted to heat energy without producing the high-energy radiation normally associated with nuclear interaction. The magic of LENR takes place in and only in the NAE.

This concept does not conflict with or violate any physical law because this unique condition has yet to be explored by science. This is virgin territory having no relationship to hot fusion or to the concepts obtained from studies of the hot fusion mechanism.

Therefore, identifying and describing the NAE is essential to creating a useful theory about LENR. Because the NAE is part of a chemical structure, the chemical conditions must be part of this understanding.

Unlike hot fusion, which occurs in plasma, cold fusion is strongly influenced by the chemical properties of the material in which NAE forms. Most theories mistakenly ignore the chemical requirements.

Without a chemical structure and its chemical behavior, the NAE cannot form and LENR cannot occur. Consequently, LENR is first and foremost a chemical process with nuclear consequences. Thus, the focus should be shifted from the nuclear consequences to those conditions required to form the NAE and to its role in hosting the nuclear reactions.

This idea might be a bridge too far for many theoreticians, nevertheless, I strongly suggest an effort be made to cross the bridge rather than keep trying to swim the river.