Tag Archives: theory

LENR theory paper revised with more detail

Edmund StormsHow basic behavior of LENR can guide a search for an explanation [.pdf] has been revised with more details.

Download [.pdf]


How basic behavior of LENR can guide a search
for an explanation
[.pdf] by Edmund Storms

The LENR effect was identified 27 years ago by Profs. Fleischmann and Pons as production of extra energy in a normal chemical structure, in this case PdD. Over a thousand published papers now support the discovery and the energy is shown to result from fusion of hydrogen isotopes without the need to apply energy and without energetic radiation being produced. By conventional standards, the claims are impossible. Nevertheless, a new phenomenon has been discovered requiring acceptance and understanding. The major behaviors and their present understanding are described in this paper and are used to suggest how an effective explanation might be constructed. Once again, science has been forced to either reject the obvious or accept the impossible. In this case, the normal skepticism needs to be ignored in order to determine if this promised energy source is real and can provide the ideal energy so critically

Low Energy Nuclear Reaction (LENR) or Cold Fusion was introduced to the world 27 years ago by Fleischmann and Pons(1), Univ. Utah, with expectation of great benefit to mankind. Instead, their claim for a new kind of fusion was quickly rejected (2), an attitude that continues even today. Over the years, several thousand papers addressed the subject with a large fraction supporting the claim(3). Mastery of about 1000 papers is now required to understand the effect.

A description of all the known behaviors and all proposed explanations would require much more than a single review paper. Here, only the tip of the large iceberg will be examined along with some original results not published elsewhere. The selection of behaviors is designed to focus attention on only the essential conditions required to cause the LENR effect. Limits will be set using observed behavior in order to evaluate proposed explanations. The new kind of nuclear interaction needed to explain LENR is expected to fall within these limits. In other words, boundaries need to be identified to keep the imagination from running wild. The LENR effect is assumed consistent with all rules normally applied to conventional chemical and nuclear behavior. Nevertheless, a novel mechanism is clearly operating and needs to be acknowledged.

Many conditions needing consideration are not quantitative or lend themselves to mathematical analysis. While frustrating to conventional scientists, these unique behaviors must be made part of a successful explanation. Quantitative behaviors can be used to expand understanding once the basic process is understood.

An effective explanation needs to solve several difficult problems. The Coulomb barrier needs to be overcome without using more energy than is normally available in a chemical structure at room temperature. Neutron formation, which has been suggested by several theoreticians (4, 5), is prohibited because the required energy of 0.78 MeV and the required neutrino can not be expected to be available at the same site at the same time. Once fusion has occurred, the mechanism must then dissipate the huge nuclear energy released by the process without producing local destruction of the chemical structure or energetic radiation. The mechanism must also account for various transmutation reactions known to occur. Failure to combine these events in a way that is consistent with known chemical and nuclear behavior dooms most efforts to explain the process. In contrast, a single mechanism is proposed in this paper to cause all observed behavior while being consistent with known chemical and nuclear behavior.

This paper has two parts, with the first describing the important observations on which an explanation must be based. The second part uses a few assumptions combined with these chosen behaviors to provide an explanation about how LENR can be initiated using a proposed mechanism. This mechanism is clearly much different from that causingn the conventional hot fusion process. Ironically, this conflict is used to reject the claims for LENR rather than guiding a search for the cause of the difference. Consequently, this difference must be clearly understood before the novel features of LENR can be explored.

Unlike hot fusion, LENR takes place in and requires a chemical structure to operate. The role of this structure must be understood before physics is applied to understanding subsequent nuclear process. Clearly, a unique and rare condition must form in the structure in which a nuclear process can function. The nature of this condition is discussed following the discussion of hot fusion.

Continue reading How basic behavior of LENR can guide a search for an explanation – Revised here.

Facebooktwittergoogle_plusredditby feather

What does theory do and how does it need to be tested?

For this discussion, I use the word “theory” to describe any attempt to explain using unifying concepts, regardless of the detail or the certainty being applied or expected.

All phenomenon in Nature are complex and do not have a single behavior. Some phenomenon have a single and obvious characteristic, such as gravity. But a full understanding requires more information than only a falling apple provides. A theory attempts to bring all the behaviors together into a single unifying understanding.

Sometimes, the behavior complex is large and involves many kinds of behaviors, such as is found for LENR. This phenomenon involves chemistry, nuclear physics, quantum physics, nano-technology, heat measurements, radiation measurements, and psychology. Each behavior appears to be isolated from every other behavior while being very unreliable in its occurrence. A different set of behaviors are even observed when different conditions are used. As result, a person has difficulty in knowing how many independent phenomenon are operating.

Without a unifying explanation, these behaviors make no sense, they can not be produced with reliable expectation, and amplification of the effect becomes impossible. We are forced to explore the effect at random, by trial and error, without any expectation of success.

This limitation can be greatly reduced when an effort is made to unify all the separate behaviors. Success requires the correct identification of the behaviors without introducing too much arbitrary imagination. The explanation must also be consistent as much as possible with behavior already accepted in chemistry and physics.

The best theory takes the greatest number of behaviors into account.

Unfortunately, we are presently overwhelmed by theories based on small subsets of the behavior complex.

The psychology of theory is also important. Some people seem to think that theory supports a claim, a conclusion, or a reveals something new about Nature. It does not. Theory is ONLY a tool used to connect a collection of behaviors so that the unifying characteristics can be revealed.

Theory can be neither proven or disproven. Only a logical relationship can be proven or disproven, but this kind of relationship is not a theory of natural behavior. Mixing these two kinds of explanations creates much confusion, especially in the minds of mathematicians who think their equations actually are an expression of the real Nature.

A theory of natural behavior simply relates a collection of behaviors in order to predict future behavior under a wide variety of conditions. For example, the laws of thermodynamics allow the behavior of chemical systems to be predicted when a wide range of conditions are used. The theory does not reveal how how or why these behaviors occur, except perhaps as result of using imagination.

Quantum theory attempts to answer such questions, but again much imagination must be used. The part of any theory based only on imagination is subject to change as more understanding based on behavior is achieved. Of course, the part of theory based on behavior, rather than imagination, remains unchanged. The connection between these two different aspects of theory remain confusing to many people, even to scientists.

To state another way, theory proves nothing about Nature and is subject to change without notice as the part based on imagination is modified. Nevertheless, the human mind must have an explanation regardless of how effective it might be in describing Nature. Any crazy idea will serve as long as it attempts to satisfy this craving. That is why so many theories are applied to LENR. LENR is a theory vacuum that must be filled. Pretending this need does not exist or is not important is pointless because it is basic to human nature.

Nevertheless, this does not mean all theories need to be taken seriously. Eventually, someone will put the pieces together in the correct way and the theory will become part of conventional understanding. The sooner this happens, the sooner the effect will be accepted by conventional science.

New graphic from updated version of The Explanation of Low Energy Nuclear Reaction depicting resonating hydrogen nuclei upon approach
New graphic from updated version of The Explanation of Low Energy Nuclear Reaction depicting resonating hydrogen nuclei upon approach

In my case, I have attempted to unify as many behaviors as possible while identifying all the behaviors and citing the sources. I also attempted to show the deficiencies of other theories, which need to be filled rather than stubbornly insisting on deficient ideas.

Understanding the logical connections in my theory will reveal a total structure that connects many behaviors. Appropriate testing to keep, modify, or discard any ideas can then be used to refine the model.

Facebooktwittergoogle_plusredditby feather

Examples of how nature dissipates nuclear energy

I’m trying to encourage use of known behavior to evaluate the possibly explanations for LENR.

One of the goals of scientific theory is to improve application of the phenomenon being explained. A theory is not “useful” if does not actually describe how LENR works so that the theory can be used to improve the ability to produce LENR at commercial rates. When this definition is applied, the present theories are not useful.

A great deal is known about nuclear behavior in general and LENR in particular. This information is being ignored in preference to using imagined processes having very little relationship to what is known or is possible based on logic. We need to start by acknowledging and agreeing on some basic conclusions. We need to apply these conclusions consistently to every effort to explain LENR. We can fill in the details as we go along, but not at the start of the process.

The lesson provided provided here involved a universal characteristic of all nuclear reactions, with one apparent exception. Normally, when a nuclear reaction of any kind occurs, the energy is released as KINETIC energy contained in emitted particles, including photons.

When fusion takes place at any temperature under any condition, except LENR, the nuclear product fragments into two particles.

Release of nuclear energy [.ppt]

Nuclear energy is normally released by fragmentation, but LENR is different.
Nuclear energy is normally released by fragmentation, but LENR is different.

This conclusion leads to another.

Muon fusion shows that simply bringing two D close together, even at low temperature, results in the normal fragmentation of the product. This means that any imagined process that simply forces the D to get close enough to fusion can be expected to release energy by the normal fragmentation mechanism. Clearly any process that brings the two D close enough to fuse during LENR also must involve a process that releases the energy in a manner different from what nature normally uses because the hot fusion products are not detected during LENR.

In the case of LENR, the nuclear products do not fragment. This result is most clearly seen in the production of helium created in numerous studies and the transmutation products created by Iwamura et al. Tritium production is less clear in this regard but is nevertheless consistent with this conclusion.

Helium can result from two deuterons combining into a single nucleus. This reaction produces more energy/He than any other possible source of helium. The amount of energy/He measured during LENR is close to the amount resulting from D-D fusion and is significantly greater than the amount resulting from any other source of helium.

The process of helium production shows no evidence for the energy being released as the kinetic energy of particles or fragments resulting from the process. In other words, the helium results from a mechanism that is very different from the mechanism normally used by nature to dissipate nuclear energy.

If we agree on these facts, we can conclude that LENR requires a process that both lowers the Coulomb barrier and at the same time dissipates the resulting energy in a novel manner using an unusual mechanism. The only challenge is to find a mechanism that combines lowering of the barrier with energy dissipation in a consistent and logical way. In other words, we need to stop looking for individual mechanisms for these two processes that act independently of each other. We must look for a single unifying mechanism.

Let’s move on to examine some of the proposed processes, starting with the “breathers” idea.

Several people have proposed a spontaneous temperature change can occur in a material such that some local regions can get cold enough of a BEC to form or hot enough for normal fusion to occur. Although this concept violates the Second Law of Thermodynamics, the event is proposed to be brief and random, which are considered exceptions to the Second Law.

Let’s start by imagining the sequence of events. First a D atom gets suddenly very cold by losing energy to its surroundings. We will not be concerned how this happens just yet. For a BEC cluster to form, other D atoms have to move from their present locations some distance away from the cold spot to the cold spot while the spot remains cold. To move, a D must have kinetic energy. So, the process is imagined to result in energetic D accumulating together into a structure that does not have energy.

Where does the energy go that each added D brings to the growing BEC? Now an energy extracting mechanism must be proposed such that as energy is brought to the site by each D, a mechanism removes the energy to the warmer surroundings. This is no longer a random process and it must continue long enough for many D to diffuse from sites located at increasing distance from the growing BEC. To repeat, the D has to move by diffusion, which requires energy. Once it joins the BEC, it has to dump this energy into the surrounding atoms. This event has to occur hundreds of times as this BEC grows on its isolated site. In addition, millions of other isolated sites within the lattice have to grow similar a BEC. This process has to take place for weeks in order to continue producing energy at the observed rate and duration.

Consequently, we have to imagine conflict with three basic requirements: violation of the Second Law, the violation of Gibbs energy requirements, and creation of an energy extracting mechanism not know to exist. This idea seems to require a high level of conflict in order to justify a process that has no reason to exist other than to explain LENR. This level of conflict is too high to apply this idea to LENR.

Facebooktwittergoogle_plusredditby feather